
On an Hybrid and General Control Scheme for
Algorithms Represented as a Polytope

Roberto Pérez-Andrade and César Torres-Huitzil
Information Technology Laboratory

Advanced Studies Center of the National
Polytechnic Institute, CINVESTAV

Ciudad Victoria, Tamaulipas, Mexico
email: {jrperez, ctorres}@tamps.cinvestav.mx

René Cumplido and Juan M. Campos
Department of Computer Science

National Institute for Astrophysics,
Optics and Electronics, INAOE

Santa Maria Tonantzintla, Puebla, Mexico
email: {rcumplido, jcampos}@ccc.inaoep.mx

Abstract—This paper presents a general and hybrid
(centralized and distributed) approach for the activation of
processing elements (PEs) inside of a processor array using the
polytope model. The proposed approach is suitable of being
implemented on reconfigurable systems since by changing some
mathematical expressions, the proposed control approach is
able to provide activation patterns for different algorithms
based on the polytope model. We have taken the Cholesky
decomposition as example for developing our hybrid control
towards a generalization of this scheme.

I. INTRODUCTION

Nowadays, the intensive computational requirement needed
in domains of science and engineering cannot be met
only by semiconductor advances, but also by designing
architectures based on parallel paradigms [1]. Among several
issues, the parallel paradigm is concerned with architectural
and algorithmic methods for enhancing the computer’s
performance, leading to the development of parallel models
like systolic arrays and processor arrays.

Systolic arrays are able to map many algorithms used in
scientific computing, signal and image processing, biological
data analysis, among others fields. Although the term systolic
array is often associated equally with the term processor array,
this last is far beyond the concepts in systolic array design. The
processor array term also refers to several levels of parallelism,
memory, and control [2]. The design of these parallel hardware
architectures by hand is cumbersome and error-prone. Fortu-
nately, there are some approaches that reduce these drawbacks
like the polytope model. The polytope model is based on
parametric integer linear algebra, integer linear programming,
affine array accesses, dependence analysis and transformation
based on integer matrixes [3]. This polytope model is actually
used for the synthesis of loop accelerators [2], and it mainly
targets to counted loops that manipulate array access with
affine indexes extracting the parallelism at loop-level (LLP).
When the polytope model is used, it could derive processor
arrays able to solve problem instances independent of the
problem size, unlike architectures based on systolic arrays
which are size dependent. One problem that must be faced
is the generation of the control signals needed to activate,

deactivate and reactivate the PEs inside the processor array.
Much of the required information for the generation of these
control signals can be extracted from polytope that represents
the sequential loop program. In this paper, we address the
problem of generating these control signals by taking two
cases of study. The generality of our approach is that by
changing these expressions, others algorithms represented as
a polytope can be supported.

II. BACKGROUND

For the purpose of providing the context of our control
scheme, it is necessary to provide some basic notations.
Suppose that we have a p-nest loop (source polytope). Each
one of the loop bounds is an affine function of outer loop
indexes. These loops bounds can be expressed as a set of
inequalities in the next form:

l1 ≤ i1 ≤ u1

l2(i1) ≤ i2 ≤ u2(i1)
...

lp(i1, i2, ..., ip−1) ≤ ip ≤ up(i1, i2, ..., ip−1)

(1)

where lr and ur are constant integer valued affine functions
of i1, i2, ..., ir−1 for 1 < r ≤ p. Each one of these inequalities
divide an space of dimensionality p in two half-spaces. A
polytope is a bounded intersection of a finite number of half-
spaces. Hence, the set of inequalities, each representing a face,
can be used to compactly represent the polytope. The index
space or iteration space of the source polytope is the subset Zp

consisting of all the index points defined by the inequalities
presented in the expression 1. A space-time representation (or
target polytope) can be achieved by transforming a source
polytope by a unimodular matrix T. The unimodular matrix
T is composed by a scheduler and an allocation function. The
scheduler assigns a time execution to each computation inside
the loop nest in such way that all dependences are preserved;
meanwhile the allocation function maps a p dimensional index
point to a p-1 dimensional processor space. A new index space
of the target polytope can be obtained by applying the matrix
T to the iteration space of the source polytope by using the

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.163

329

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.163

325

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.163

325

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.163

325

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.163

325

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.163

330

Fourier-Motzkin elimination algorithm [4]. The target polytope
has the same iterations, but with a parallel execution order.
From this space-time representation, a large and problem size-
dependent processor array could be derived. However, by
applying partitioning techniques over the target polytope, it
can be derived problem size independent processor arrays.
Partitioning is achieved by applying Strip-Mining and loop
interchange over the index space [5]. Strip-Mining consists
on decomposing a single loop into two nested loops; the
outer loop (the tile loop) steps between strips of consecutive
iterations, and the inner loop (the element loop) traverses the
iterations within a strip. When space indexes are partitioned,
the original processor space is divided into congruent tiles that
are subsets of the original processor space. The set of PEs
inside of a partition can be viewed as physical processors,
meanwhile the original processor space can be interpreted
as logical processors mapped to the physical processors. By
partitioning the iteration space, it emerges a situation that in a
size dependent processor array is not presented: the generation
of activation signals for the PEs reutilization. In a size depen-
dent processor array the PE could be activated one or more
consecutively times, but once the PE stops, the PE remains
inactive during the rest of the algorithm computations. On
the other hand, in a processor array generated by partitioning
techniques, an inactive PE could be reused during an algorithm
computation, leading to increment the PEs percentage usage.
In next sections, we will focus on a case of study which will
help to derive a general hybrid control scheme able to support
different space-time unimodular transformation matrixes and
partitioning.

III. CASE OF STUDY: CHOLESKY DECOMPOSITION

The case of study is the Cholesky decomposition algorithm.
Given a symmetric and positive-definite matrix W ∈ CN×N

is decomposed into W = L× L’, where L ∈ CN×N is a lower
triangular matrix. The Cholesky algorithm loop bounds are
shown in 2.

0 ≤ k ≤ N − 1
k ≤ j ≤ N − 1
j ≤ i ≤ N − 1

(2)

In order to apply a space-time transformation, it is needed
to construct a unimodular matrix T from the scheduler and
allocation functions. We have selected the linear scheduler
method proposed by Darte et al. in [6], and as allocation
method the projection vector. The target polytope bounds
obtained by using the scheduler function �λ = [1, 1, 1] and
the projection vector �u = [1, 0, 0] are:

0 ≤ t ≤ 3(N − 1)
max(0, �(t− (N − 1))/2�) ≤ p0 ≤ min(�t/2� , N − 1)

max(p0, t− 2p0) ≤ p1 ≤ min(N − 1, t− p0)
(3)

According to the Fourier-Motzkin algorithm max, min, floor
and ceiling functions are used for lower and upper bounds of

Logical Array Physical Array

Tiling

Fig. 1. Activation of the full-size processor array for a size of problem N =
8 when tilep0 = 4, and tilep1 = 6 and t = 17 and its mapping from a full-size
logical array to a physical array of size 2x3. Note that in this mapping some
PE are not valid (dashed PE).

each index. Note that the new index space is formed by the
indexes representing time and a bi-dimensional space.

A. Partitioning

Applying the partitioning technique to the space indexes
and moving the space tiled indexes to be the outer loops,
the loop boundaries for the partitioned target polytope are
shown in expression 4, where b = tilep0 + StripSizep0-1 and
d = tilep1 + StripSizep1-1. StripSizep0 and StripSizep1 are the
incremental steps for the partitioned indexes and they represent
the size of the strips. Figure 1 exemplifies the mapping from
a size dependent processor array to a physical one, setting
the size of the strips to StripSizep0 = 2 and StripSizep1 = 3
values at compile time. From figure 1, nodes represent PEs
and arrows the connection among PEs. Note that there are
some cases when the mapping is not valid. The hardware
impact of this characteristic is that during a tile iteration not
all the physical processors will be activated, while in another
tile iteration some of them will be. The generation of control
signals for target partitioned polytope is not an easy task.
From the indexes of this program it can be obtained sequences
for the PE activation and the selection of the operations
as function of indexes tilep0, tilep1 and t. The proposed
control scheme for the generation of these control signals is
based on the idea that an activation signal must be injected
in an specific PE inside the processor array and then, this
signal must travel through the processor array, activating PEs.
The circulation of activation signal is performed by knowing
two specific algorithmic characteristics: the activation pattern
of the processing elements and when a physical processor
performs a valid mapping. In fact, by discovering these two
characteristics in other algorithms, our control scheme can be
applied for other algorithms modeled as polytope. Next section
is advocated to describe the hybrid control scheme (distributed
and centralized) for the generation of the control signals.

IV. HYBRID CONTROL APPROACH

The idea behind the proposed control architecture is to
have an special unit in charge of generating the non-parallel
indexes sequentially (sequence generator), to decode these
indexes in order to know what PE is the first one to be
activated (activation-signal injector), and to propagate the
activation signal through the processor array (control array).

330326326326326331

0 ≤ tilep0 ≤ N − 1⌊
tilep0

StripSizep0

⌋
Strip0 ≤ tilep1 ≤ N − 1

max(2tilep0, b, tilep0 + b) ≤ t ≤ min(3d, 2tilep1 + d, 2tilep1 + n− 1, 3(N − 1))

max(a,
⌈
t−n+1

2

⌉
,
⌈
t−d
2

⌉
) ≤ p0 ≤ min(

⌊
t
2

⌋
, N − 1, d, t− tilep0, t− b, tilep1)

max(tilep0, b, t− 2tilep1, p0, t− 2p0,
⌈
t
3

⌉
) ≤ p1 ≤ min(N − 1, d, t− tilep0, t− p0)

(4)

The sequence generator is composed by a set counter-like
modules (figure 2) connected in a cascade fashion in order to
support affine expressions. Between each pair of counters, a
Max/Min module in charge of evaluating the maximum and
minimum expressions presented in the loop bounds is inserted.
For each non-parallel loop presented in the partitioned target
polytope, it is required a Max/Min module and a counter-like
module. So, for the case of partitioned target Cholesky
polytope, it is required 3 pairs of counter-like and Max/Min
modules. The advantage of this approach is that if a new
space-time transformation T is applied, only by changing the
Max/Min expression the sequence generator will be able to
generate the sequences of the new transformation. Moreover,
by adding p-pairs of counter-like and Max/Min modules it
can be achieved the functionality of a p-nest loop. The second
element of the hybrid control is the activation-signal injector.
This unit is in charge of selecting which PE, in the bottom
row of the physical processor array, must be activated during
a tile iteration by injecting an activation signal. It also injects
an index bus composed by counter tilep0, tilep1, time and the
size of the problem N. The reason of injecting this data to the
processor array is that all PEs must know what tile iteration is
being executed at determinate time and what is the size of the
problem that is being solved. In order to inject the signal at
the correct PE, it is needed to know what PE must be the first
one to be used. This is achieved by evaluating the expressions
of the lower bounds of the parallel loops. This functionality is
accomplished by a set of combinational Max modules, which
map the lower bounds expression of the parallel indexes, and
by a n-1 decoder module which decodes p1 index value in
order to generate the activation signal. The output width of
the n-1 decoder module is equal to the StripSizep1 parameter
and each output bit of this decoder goes to one of the bottom
control cells located in the control array. The last element
of the hybrid approach is the control array. This unit is in
charge of activating a set of PEs inside the processor array
at certain time in an specific tile iteration. This activation
occurs by circulating the activation signal and the index bus
injected by the activation-signal injector. The control unit is
composed by several cells that are replicated as many times
as PE have the processor array. The interconnection of these
cells is the same as the processor array and each one of
these cells decides if its upper or righter neighbor must be
activated at the next clock cycle. For achieving the correct
activation of the processing elements, it is needed to know
their activation pattern and when a physical processor maps
a valid logical processor. The activation pattern provides an

1

0

reset

out

clk

hold

input

UpperLimit

LowerLimit

Hold

Reset
Clk

Load

Count

EndCount

+

1

0

And
GatesSTEP

Fig. 2. Counter-like internal architecture.

idea about how many clock cycles the activation signal must
be kept alive inside of a PE, which of the case of Cholesky
decomposition is shown is MaxLifei = rowi + tilep0. On the
other hand, in order to know a valid mapping from a physical
processor array to the physical one it is needed to check
the boundaries mapped. If the PE is inside these boundaries,
then the mapping is correct. For the Cholesky decomposition
algorithm, it is possible to detect the PEs inside these detect
the PEs inside these boundaries when expressions tilep0 + p0

+1 ≤ tilep1 + p1 and tilep1 + p1 +1 < N are true.

The control cell has combinational logic which maps these
expressions in order to produce the correct activation. Thereby,
each control cell has a counter for counting the life time of the
activation signal in a PE, combinational logic for detecting the
boundaries and for propagating the activation signal, a register
for storing the index bus, and a state machine in charge of
providing the activation signal to the PE neighbor during a
clock cycle. Figure 3 presents the internal architecture of the
control cell. The interconnection of the control cells forming
the control array is shown in figure 4.

Reset

PE_Enable

Clk

Stop

Start

State Machine

Reset

Count

Clk

Enable

Start

Counter

=

MaxLifei

Reset

OutputBus

Clk

InputBus

Register

OutputH
Tilep0

Boundaries Detector

Tilep1

N
OutputV

Activation Logic

+

'1'

InputH

InputV

EjectedH

EjectedV

InjectH

+ Rowi

InjectV

Tilep0

Tilep1

N

Time

PE_Enable

OutputBus

InputBus

Reset

DQ

Clk

Reset

DQ

Clk

EjectedH

EjectedV

Fig. 3. Internal control cell architecture.

331327327327327332

InjectedH EjectedH

EjectedV

InjectedV

PEEnable

OutputBus

InputBus

InjectedH EjectedH

EjectedV

InjectedV

PEEnable

OutputBus

InputBus

InjectedH EjectedH

EjectedV

InjectedV

PEEnable

OutputBus

InputBus

InjectedH EjectedH

EjectedV

InjectedV

PEEnable

OutputBus

InputBus

InjectedH EjectedH

EjectedV

InjectedV

PEEnable

OutputBus

InputBus

InjectedH EjectedH

EjectedV

InjectedV

PEEnable

OutputBus

InputBus

Fig. 4. Interconnection of the Control Cells.

TABLE I
HARDWARE RESOURCE UTILIZATION FOR MATRIX MULTIPLICATION AND

CHOLESKY DECOMPOSITION.

Speed Slices Flip LUTs Word Size

Algorithm (MHz) Count Flops Count (Bits)

Multiplication 127 105 30 196 8

Multiplication 94 246 54 464 16

Multiplication 46 499 103 949 32

Cholesky 114 134 29 253 8

Cholesky 76 308 53 607 16

Cholesky 66 636 101 1,264 32

V. RESULTS

For purpose of validation, the proposed hybrid control
scheme was modeled using VHDL Hardware Description
Language, synthesized with Xilinx ISE 9.2 and targeted
for a Virtex-4 XC4VSX35 FPGA device. Although our
proposed control scheme is independent size, there exists one
restriction. The data bus width is fixed by a size of n-bits.
Once our hybrid control scheme is implemented, in the worst
case, the implementation will be able to support matrixes of
Nmax × Nmax, where Nmax = (2n - 1 / 3) + 1. For example,
data bus width configurations of 8-bits, 16-bits and 32-bits are
able to manage matrix sizes until 85×85, 21,845×21,845 and
1.43e09×1.43e09 respectively. It is important to differentiate
that the hybrid control scheme is independent of the problem
size in the sense that given a data bus width, it would
be able to provide an activation pattern for the PEs in a
processor array of size StripSizep0×StripSizep1 for size of
problems minor than Nmax. Moreover, the StripSizep0 and
StripSizep1 parameters are fixed at compile time deriving a
fixed processor array (for data-path and control).

Table I summarizes the synthesis results for different data
bus widths and for the Choelsky case of study and matrix
matrix multiplication. It is important to recall that by changing
the mathematical expressions that map the loop boundaries,
the activation pattern and loop boundaries, it is possible
to support other algorithms represented as partitioned target
polytope as the multiplication matrix. From table I note that
the synthesis results in the worst case, requires less than 4%
of the FPGA targeted device; leaving enough FPGA resources
for the implementation of the loop body i.e. the processor

array data-path. The division by 3 in the p1 lower bound in
Cholesky implementation was dealt as a multiplication by 1/3
in a fixed point representation, without adding an error due
the ceiling function.

VI. CONCLUSION AND FUTURE WORK

Although processor arrays are able to map many algorithms,
the design of these arrays is a complex task. Approaches
like the polytope model are helpuful for the generation of
processor arrays. By abstracting some characteristics and
adapt them to hardware architectures it is possible to speed
up the time required for developing such architectures. In this
work, it has been presented an hybrid control scheme towards
an abstraction of polytope model for a hardware architecture.
This control schemes is based on three elements: a sequence
generator, an activation-signal injector and a control array. By
changing some mathematical expressions, our control scheme
is able to generate the activation patterns for different three
nested loops algorithms, which makes this control scheme
suitable of being implemented on reconfigurable systems.

We plan to extend this work to three and more loop nests
towards a general framework able to support algorithms based
on the polytope model. We also plan to address the automatic
extraction of the mathematical expressions which help to gen-
erate and propagate the control signals through the processor
array. Finally, we plan to develop memory hierarchies based
on the polytope model able to provide data to the processor
array, and at the same time, extract data from the array.

ACKNOWLEDGMENT

First author thanks the National Council for Science and
Technology from Mexico (CONACyT) for financial support
through the scholarship number 3792.

REFERENCES

[1] M. Mehrara, T. Jablin, D. Upton, D. August, K. Hazelwood, and
S. Mahlke, “Multicore Compilation Strategies and Challenges,” IEEE
Signal Processing Magazine, vol. 26, no. 6, pp. 55–63, 2009.

[2] F. Hannig, “Scheduling Techniques for High-Throughput Loop Acceler-
ators,” Ph.D. dissertation, University of Erlangen-Nuremberg, Germany,
Augost 2009.

[3] C. Lengauer, “Loop Parallelization in the Polytope Model,” in CONCUR
’93, Lecture Notes in Computer Science 715. Springer-Verlag, 1993, pp.
398–416.

[4] A. J. C. Bik and H. A. G. Wijshoff, “Implementation of Fourier-Motzkin
Elimination,” Leiden University, Tech. Rep., 1994.

[5] M. Jiménez, “Multilevel Tiling for Non-Rectangular Iteration Spaces,”
Ph.D. dissertation, Universitat Politècnica de Catalunya, May 1999.

[6] A. Darte, L. Khachiyan, and Y. Robert, “Linear Scheduling Is Nearly
Optimal,” Tech. Rep., 1991.

[7] U. Bondhugula, J. Ramanujam, and P. Sadayappan, “Automatic Mapping
of Nested Loops to FPGAs,” in PPoPP ’07: Proceedings of the 12th
ACM SIGPLAN symposium on Principles and practice of parallel pro-
gramming, 2007, pp. 101–111.

[8] A.-C. Guillou, P. Quinton, and T. Risset, “Hardware synthesis for multi-
dimensional time,” in IEEE International Conference of Application-
Specific Systems, Architectures, and Processors (ASAP’03)., 2003, pp.
40–50.

[9] M. Bednara, F. Hanning, and J. Teich, “Generation of distributed con-
trol,” in Embedded Processor Design Challenges: Systems, Architectures,
Modeling and Simulation-SAMOS, 2002, pp. 154–170.

332328328328328333

